Site items in: Energy Carrier

Power-to-Ammonia-to-Power (P2A2P) for Local Electricity Storage in 2025
Presentation

A carbon-free, circular economy is required to decrease greenhouse gas emissions. A commonly named alternative to the carbon-based economy is the hydrogen economy. However, storing and transporting hydrogen is difficult. Therefore, the ammonia economy is proposed. Ammonia (NH3) is a carbon-free hydrogen carrier, which can mediate the hydrogen economy. Especially for long-term storage (above 1 day), ammonia is more economically stored than hydrogen. Transportation costs are greatly reduced by adopting a decentralized energy economy. Furthermore, political-economic factors influence energy prices less in a decentralized energy economy. With small-scale ammonia production gaining momentum, business models for the decentralized ammonia economy are…

Great Strides in NH3 Commitment and Progress in Australia
Article

In the last 12 months ... Ammonia Energy has published posts covering pertinent activity in 32 different countries.  In most of them, ammonia’s potential as versatile energy vector has reached the point of avowed interest from relevant institutions.  In a small handful, it has become a part of national policy.  But, as demonstrated in repeated instances throughout the year, nowhere is ammonia energy more robustly embraced than Australia.  The central argument behind this assertion is captured in the phrase, “the complete package,” as in “package of resources, policies, players, partners, and investments.”

Ammonia as a Hydrogen Carrier for Hydrogen Fuel Cells
Article

In the last 12 months ... Consider the attributes that characterize a good hydrogen carrier: liquid state at ambient conditions; high volumetric and gravimetric energy density; low propensity to create lethal hazards when transported, stored, and used.  Now consider that ammonia is superior to hydrogen itself in every one of these areas.  Given this, it stands to reason that proponents of hydrogen fuel cells should embrace ammonia as a valuable enabling technology that can elevate the feasibility and improve the economics of fuel-cell-based systems.  And indeed this embrace became evident over the last year.

Hydrogen Plans Appear, But Where Is Ammonia?
Article

The concept of hydrogen as the centerpiece of a sustainable energy economy continues to gain momentum.  It is the focus of recent reports from France and the United Kingdom that consider the topic from two distinct but surprisingly convergent national perspectives.  And while ammonia is not given a role in either treatment, this seems to be because the authors' thinking has not arrived at a level of detail where ammonia's virtues become salient.

South Korea to Launch Major Fuel Cell Vehicle Initiative
Article

Where will fuel cell vehicles (FCVs) first achieve critical mass?  Japan and California spring to mind as likely jurisdictions.  South Korea not so much.  That situation could change, though, with recent announcements from the Ministry of Trade, Industry, and Energy (MTIE) in Seoul.  In fact, planned public and private sector investments could push South Korea to the front of the FCV pack. But while hydrogen-related activity of this nature can create opportunities for ammonia energy, the question always looms: are the key players in the implementing jurisdiction aware of the enabling roles ammonia can play?  Hyundai is unquestionably a key player in South Korea’s FCV landscape, and, courtesy of its support for the Australian ammonia-to-hydrogen fueling demonstration that will kick off in August, Hyundai is certainly aware, and could even become a champion, of ammonia-based FCV fueling.

On the Ground in Japan: 5th Basic Energy Plan, LH2 Investment
Article

Japan, widely recognized as a global leader in the development and implementation of ammonia energy, is a fascinating case study for advocates seeking a template for progress.  But, as Ammonia Energy has documented in numerous posts over the last two years, even in Japan the path is neither linear, smooth, nor preordained.  Two recent developments, one in the public sector and one in the private, illustrate anew the complexity of the evolutionary track the country is negotiating as it strives to create a sustainable energy economy.

Toyota, 7-Eleven to Cooperate on Low-Carbon Convenience Stores
Article

Last month, one Ammonia Energy post discussed Toyota’s participation in a Low-Carbon Hydrogen Project in its home prefecture -- including implicit support for ammonia as a hydrogen carrier.  Another post discussed Japanese manufacturer IHI’s plans to commercialize a small-scale combined heat and power system (micro CHP) based on direct ammonia solid oxide fuel cell technology.  Now, according to a June 6 Toyota Motor Corporation press release, Toyota and micro CHP have converged. The announcement served as the unveiling of a “joint project” by Toyota and the convenience store chain 7-Eleven to develop “next-generation convenience stores aiming to considerably reduce CO2 emissions.”  The two companies initially agreed to cooperate in August 2017 on "considerations toward energy conservation and carbon dioxide emission reduction in store distribution and operation.”

Australia's Woodside Petroleum Considers Ammonia as a Hydrogen Carrier
Article

At last week’s Australian Petroleum Production and Exploration Association Conference, Woodside Petroleum’s chief executive officer Peter Coleman spoke about the “huge” opportunity in hydrogen energy that will develop for the company over the next 10-15 years.  Coleman sees the Japanese market for hydrogen as a promising destination for Woodside’s substantial reserves of natural gas, and indicated the company is evaluating alternative methods of hydrogen transport including as liquid H2, a liquid organic hydride, and ammonia.

Toyota Supports H2 Society Roll-Out on Its Home Turf; Sees Role for NH3
Article

Toyota Motor Corporation announced on April 25 the launch of an effort called the Chita City and Toyota City Renewable Energy-Use Low-Carbon Hydrogen Project.  According to the company’s press release, the project is intended as a step toward “the realization of a hydrogen-based society spanning the entire region through mutual coordination and all-inclusive efforts.”  For ammonia energy advocates, the announcement had two elements of particular significance. First is the clear indication that Toyota Motor Corporation is embracing ammonia as a hydrogen carrier – although not as a motor fuel.  Second is the project’s stated intention to establish a “system in which Aichi Prefecture certifies low-carbon hydrogen objectively and fairly.”

Ammonia-to-Hydrogen Seen for Electricity Generation
Article

Approximately 40% of the world’s energy budget is consumed in the generation of electricity.  This is by far the largest use of primary energy across major energy-consuming sectors (transportation, industry, etc.).  What role ammonia will play in the electricity sector is therefore a question of considerable importance for the sustainable energy system of the future.  One concept currently on the table is power-to-ammonia as a means of electricity storage, whereby electricity is used to produce hydrogen and the hydrogen is reacted with nitrogen to produce ammonia.  The other, mirror-image, concept is to use ammonia, or hydrogen derived from ammonia, as a fuel that can be turned into electricity. This “back-end” use case is the focus of recent announcements from Mitsubishi Hitachi Power Systems (MHPS).  According to an April 5 story in the Nikkei Sangyo, MHPS plans to put a “hydrogen-dedicated gas turbine . . . into practical use by 2030.”  The company also stated that it has “started developing technology to extract hydrogen from ammonia,” citing ammonia’s ease “to store and transport.”