Site items in: Improved Haber-Bosch

Starfire Energy's 10 Kg/Day Rapid Ramp NH3 System Development
Presentation

Starfire Energy is building a 10 kg/day NH3 synthesis system using its low pressure Rapid Ramp NH3 process. The system includes hydrogen production by proton exchange membrane electrolyzer, nitrogen production by pressure swing adsorption, NH3 synthesis, and liquid NH3 storage. The tight coupling of the hydrogen, nitrogen, and NH3 processes require minimal reactant buffering. The system design, status, and preliminary performance will be discussed.

From Micro to Mega, how the green ammonia concept adapts
Presentation

Green ammonia concepts from thyssenkrupp are available from 50 to over 5000 tonnes per day. Variability of electrolytic hydrogen feed presents one of the biggest and unique challenge in achieving an optimal and stable functioning of the Haber-Bosch synthesis loop. The solutions to these challenges require a customised approach, dependent on scale and power generation mix of the of the facility. At thyssenkrupp, Australia, we offer local expertise in optimising the concepts for your small and large scale green ammonia applications, underpinned by our know how as a world leading electrolysis and ammonia technology supplier.

Demonstration of CO2-Free Ammonia Synthesis Using Renewable Energy-Generated Hydrogen
Presentation

In Japan, the government funding project SIP, Strategic Innovation Promotion Program, supports the research, development and demonstration of “Energy Carriers”. The concept of the “Energy Carriers” value chain is to produce hydrogen energy carriers overseas from fossil resources using CCS or renewable energy, and transport it to Japan for utilization as clean energy. The purpose of the program is to help realize a low-carbon society in Japan by using hydrogen. Among energy carriers, ammonia is the one of the most promising carriers, because of the ease of transportation as a liquid, higher hydrogen density, and proven technologies for commercial and…

A Low Pressure Membrane Based Renewable Ammonia Synthesis
Presentation

Ammonia is currently mostly produced by the highly energy and carbon-intensive Haber–Bosch process, which requires temperatures of 450–500 °C and pressures of up to 200 bar. The feedstock for this process is hydrogen from natural gas (NG), coal or oil, and nitrogen produced from air by cryogenic route or pressure swing adsorption (PSA). The share of NG, coal and fuel oil feedstock for the global production of ammonia is 72%, 22% and 4% respectively, contributing to approximately 420 million tons of CO2 emissions per annum, representing over 1% of global energy related emissions. The energy consumed for ammonia synthesis by…

Microwave Catalysis for Ammonia Synthesis Under Mild Reaction Conditions
Presentation

A scalable, cost-effective catalytic process of ammonia synthesis is developed by using microwave excitation under mild reaction conditions. In this research project funded by DOE ARPA-E, our interdisciplinary team of WVU, NETL, PNNL, FSU and two industrial partners have demonstrated that ammonia synthesis can be carried out at 200-300 °C and ambient pressure. This transformational process integrates system elements of electromagnetic sensitive catalysts and microwave reactor design. Taking advantages of state-of-the art non-equilibrium microwave plasma technology, catalytic ammonia synthesis undergoes a new reaction pathway where the barrier for the initial dissociation of the dinitrogen is decoupled from the bonding energy…

Advanced Catalysts Development for Small, Distributed, Clean Haber-Bosch Reactors
Presentation

The traditional Haber-Bosch (HB) synthesis of anhydrous ammonia will adapt to clean power by sourcing the hydrogen from renewable electrolysis. However, the very large scale of current HB plant designs are not well-matched to smaller and more distributed clean power resources. Plant/reactor designs need to be made at a smaller scale in order to best utilize clean hydrogen. Small, megawatt scale HB reactors have an additional advantage of being better able ramp up and down with variable renewable power. This talk will detail ARPA-e funded work into the design and optimization of these smaller, clean NH3 reactors, which utilize much…

Vanadium As a Potential Catalytic Membrane Reactor Material for NH3 Production
Presentation

In solid or liquid states, ammonia salts and solutions are the active components of most synthetic fertilizers used in agriculture, which consume 83% of the world’s ammonia. Today, ammonia for fertilizers is industrially produced via the Haber-Bosch process at 400-500 °C and at pressures up to 30 MPa (300 bar). These harsh operating conditions are necessary due to the high affinity of dissociated nitrogen atoms towards the catalyst surface in addition to the high barrier associated with N2 dissociation. For these reasons, the need for advanced catalytic methods for the reduction of N2 to ammonia remains a requirement for sustainability…

Advances in Making High Purity Nitrogen for Small Scale Ammonia Generation
Presentation

The presentation will address recent developments in the Solar Hydrogen Demonstration Project in which hydrogen, nitrogen and ammonia are made from solar power, water, and air; and used to fuel a modified John Deere farm tractor. In industrial applications very pure nitrogen is made by cryogenic distillation of air. Using Pressure Swing Absorption systems alone it is extremely difficult to achieve the required purity. An improved method was developed for making high purity nitrogen, for smaller systems. Will discuss how, when Oxygen contaminates the reactor catalyst, Hydrogen is used to purge the catalyst, and subsequently used as fuel.

Scale up and Scale Down Issues of Renewable Ammonia Plants: Towards Modular Design
Presentation

Renewable sources of energy such as biomass, solar, wind or geothermal just to mention some of the most widely extended are characterized by a highly distributed production across regions (EPA, 2017). Total renewable energy available is more than enough to provide for society needs, but the traditional production paradigm is changing. Economies of scale have featured current industry and its infrastructures based on large production complexes (i.e Dow, Exxonmobil or BASF hubs). The well-known six tenths rule has extensively been used in the chemical industry to scale up or down the cost of technologies. This rule is suitable for large…

Ammonia Absorption and Desorption in Ammines
Presentation

While adsorption onto solids is a common separation process, absorption into solids is much less often used. The reason is that absorption is usually assumed ineffective because it includes very slow solute diffusion into the solid. An exception may be the separation of ammonia from nitrogen and hydrogen using ammines, especially at temperatures close to those used in ammonia synthesis. There, ammonia can be selectively absorbed by calcium chloride; nitrogen and hydrogen are not absorbed. The kinetics of ammonia release seem to be diffusion controlled. The kinetics of absorption are consistent with a first order reaction and diffusion in series,…