Site items in: Improved Haber-Bosch

Ammonia technology portfolio: optimize for energy efficiency and carbon efficiency
Article

Earlier this month, I had the pleasure of speaking at the International Fertilizer Association's (IFA) conference on the subject of Innovations in Ammonia. A key point was the benefit of technology diversification: as with any portfolio, whether an investment account or a global industry's range of available technologies, concentration in any area represents risk, and diversification represents resiliency. Unfortunately, the ammonia industry has grown highly concentrated, and its dependency upon one technology and one feedstock represents significant risk in tomorrow's markets. This article features five charts that aim to demonstrate why energy efficiency is insufficient as the only measure of technology improvement, why it is better to optimize instead of maximize, and why market evolution is necessary to support investment decisions in sustainable ammonia synthesis technologies.

The Future of Ammonia: Improvement of Haber-Bosch ... or Electrochemical Synthesis?
Article

During our NH3 Energy+ Topical Conference, hosted within AIChE's Annual Meeting earlier this month, an entire day of presentations was devoted to new technologies to make industrial ammonia production more sustainable. One speaker perfectly articulated the broad investment drivers, technology trends, and recent R&D achievements in this area: the US Department of Energy's ARPA-E Program Director, Grigorii Soloveichik, who posed this question regarding the future of ammonia production: "Improvement of Haber-Bosch Process or Electrochemical Synthesis?"

Process Synthesis and Global Optimization of Novel Ammonia Production Processes
Presentation

Synthetic ammonia production has played a huge role in sustaining population growth by providing the nitrogen in fertilizers that are widely used in modern agriculture. Even long after it was first commercially developed by Fritz Haber and Carl Bosch in the 1930s, the Haber-Bosch process remains the basis for industrial ammonia production today. Through reducing energy requirements by half in the last 50 years, centralized industrial plants have kept their technical and economic advantage over other modes of operation. However, the centralized production also comes with high transportation costs, since plant capacities usually exceed local ammonia consumption [1]. This and…

Nitride-Based Step Catalysis for Ammonia Synthesis at Atmospheric Pressure
Presentation

Formation of metal nitrides to activate dinitrogen is one avenue to ammonia and other nitrogen compounds. Attractive aspects are operation at atmospheric pressure and moderate temperatures, formation of stable chemical intermediates rather than reliance on somewhat sensitive heterogeneous catalysis, and inexpensive materials. If a single metal is used, however, one encounters tradeoffs somewhat akin to the well-known tradeoffs for Haber-Bosch catalysts. Results will be presented for metal nitride-based ammonia synthesis, and new metal alloys that can address some of the tradeoffs between affinity for nitrogen, and formation of ammonia when hydrogen is added. Options using water instead of hydrogen will…

Presentation

With the world’s major shift towards renewable energy, the need of chemicals-based energy storage has drastically increased, as renewable energy is intermittent and energy storage medium is required. Among several chemical energy storage options, ammonia is promising for renewable energy on utility-scale. The Haber-Bosch ammonia synthesis was the first heterogeneous catalytic system employed in the chemical industry and developed over a period of century. However, the conventional ammonia process has been designed and optimized for steady state operation and high capacity. Power-to-ammonia requires a more flexible operation, small size reactors and decentralized production. The impact of adjustable parameters, such as,…

Influence of H2 / N2 Ratio on Dynamic Behavior of Ammonia Production on Ru Catalyst Under Low Pressure Condition
Presentation

Recently deployment of renewable energy such as sunlight and wind power or deployment of process technologies for carbon dioxide capture and storage (CCS) is indispensable to reduce the CO2-emission. However, there are some issues to be solved in order to accelerate the mass deployment of renewable energy. Since amount of renewable energy quite changes unstably with time, which depends on weather and place, development of process systems technology is an issue for stable and effective utilization of electric power that is generated by fluctuating renewable energy. Those in national institute of National Institute of Advanced Industrial Science and Technology (AIST)…

Atmospheric-Pressure Synthesis of Ammonia Using Non-Thermal Plasma with the Assistance of Ru-Based Multifunctional Catalyst
Presentation

Ammonia has much more uses than being a fertilizer. Its emerging applications include hydrogen carrier, fuel cells, clean transportation fuels, and other off-grid power applications. The traditional Haber Bosch process used to synthesize ammonia must be achieved at high temperature and pressure. The non-thermal plasma (NTP) allows for the synthesis of ammonia at a lower temperature and pressure conditions. It is proposed that the moderate process conditions can potentially allow a more economical construction and operation of ammonia production systems on distributed farms and renewable hydrogen production sites. In this study, we report the NTP synthesis of ammonia using dielectric…

Lower Pressure Ammonia Synthesis
Presentation

Ammonia is a very important chemical, mainly produced through the Haber-Bosch process. This process requires high temperature (>400 °C) and pressure (>150 bar) in order to ensure fast kinetics and high conversions, respectively.1 As a result, ammonia synthesis is known to be very complex and energy-intensive.2 To alleviate the complexity and energy requirements of ammonia synthesis, and to reduce the CO2 emissions, we are proposing an innovative reaction-absorption process to synthesize carbon-free ammonia in small plants.3 This green ammonia can be synthesized in wind-powered plants, with hydrogen from electrolysis of water and nitrogen from pressure swing adsorption of air.4 In…

International R&D on sustainable ammonia synthesis technologies
Article

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area. This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.

Comparative studies of ammonia production, combining renewable hydrogen with Haber-Bosch
Article

In recent months, research teams from both Canada and Italy have published comparative analyses of sustainable ammonia production pathways. These projects aim to quantify the costs and benefits of combining Haber-Bosch with a renewable hydrogen feedstock. Both projects examine the carbon intensity of ammonia production but, while the Canadian study broadens its remit to a full life cycle analysis, including global warming potential, human toxicity, and abiotic depletion, the Italian study focuses primarily on energy efficiency.