Site items in: Wind Ammonia

New P2A2P Scheme Proposed in Norway
Article

Svalbard, the Norwegian archipelago that sits far above the Arctic Circle, is being considered for the back end of an electricity-to-ammonia-to-electricity (P2A2P) scheme.  As reported in Norway's Teknisk Ukeblad (TU), the state-owned utility Statkraft has surfaced ammonia as one of four possible hydrogen-oriented solutions to meet Svalbard’s energy needs – and then short-listed it for further study.

Ammonia Absorption and Desorption in Ammines
Presentation

While adsorption onto solids is a common separation process, absorption into solids is much less often used. The reason is that absorption is usually assumed ineffective because it includes very slow solute diffusion into the solid. An exception may be the separation of ammonia from nitrogen and hydrogen using ammines, especially at temperatures close to those used in ammonia synthesis. There, ammonia can be selectively absorbed by calcium chloride; nitrogen and hydrogen are not absorbed. The kinetics of ammonia release seem to be diffusion controlled. The kinetics of absorption are consistent with a first order reaction and diffusion in series,…

Ammonia as a Grid-Supporting Energy Storage Solution
Article

In the last 12 months ... We have seen repeated enunciations of a compelling logic chain: electricity generated by wind-based and photovoltaic systems is manifesting ever-more competitive economics; the greater the share of electricity generated by intermittently active resources, the greater will be the need for complementary energy storage systems; chemical forms of “X” in the power-to-X (P2X) stored-electricity construct will surely have a role to play in long-term, large-scale energy storage; ammonia may be the most advantageous chemical for such storage.

Green Ammonia Plants, Commercially Available Today
Article

In the last 12 months ... Green ammonia pilot plants began operations in the UK and Japan, and new demonstration plants were announced in Australia, Denmark, Morocco, and the Netherlands (more, yet to be announced, are in development). Fertilizer company CEOs spoke about how green ammonia fits their corporate strategy. And all four of the global licensors of ammonia technology made it abundantly clear that they are ready and willing to build your green ammonia plant, today.

Siemens Gamesa investigating green ammonia pilot plant in Denmark
Article

Another week, another green ammonia pilot plant. Siemens Gamesa, the world's largest wind turbine manufacturer (by installed capacity), has announced a partnership with local climate innovation fund Energifonden Skive to investigate the production of ammonia from wind power at an eco-industrial hub in Denmark's "Green Tech Valley." The announcement describes "an agreement to jointly explore eco-friendly ammonia production as a way to store surplus electricity from wind turbines. The goal: a pilot plant at GreenLab Skive."

Green ammonia demonstration plants now operational, in Oxford and Fukushima
Article

Two new pilot projects for producing "green ammonia" from renewable electricity are now up and running and successfully producing ammonia. In April 2018, the Ammonia Manufacturing Pilot Plant for Renewable Energy started up at the Fukushima Renewable Energy Institute - AIST (FREA) in Japan. Earlier this week, Siemens launched operations at its Green Ammonia Demonstrator, at the Rutherford Appleton Laboratory outside Oxford in the UK. The commercial product coming out of these plants is not ammonia, however, it is knowledge. While both the FREA and Siemens plants are of similar scale, with respective ammonia capacities of 20 and 30 kg per day, they have very different objectives. At FREA, the pilot project supports catalyst development with the goal of enabling efficient low-pressure, low-temperature ammonia synthesis. At Siemens, the pilot will provide insights into the business case for ammonia as a market-flexible energy storage vector.

The Offshore-Wind / Ammonia Nexus
Article

In early April the Business Network for Offshore Wind held its 2018 International Offshore Wind Partnering Forum in Princeton, New Jersey in the U.S..  Ammonia energy was not on the agenda, at least as a matter of formal programming.  But it did come up during a panel session entitled “Offshore Wind Energy Hydrogen Production, Grid Balancing and Decarbonization.”  We know this because Steve Szymanski, Director of Business Development for Proton OnSite (a subsidiary of Norway’s Nel ASA), was on the panel and says he was the one to bring it up.  The topic attracted “a lot of interest and a lot of good questions,” Szymanski said.  Nel is an industry member of the NH3 Fuel Association.

Renewable ammonia energy, harvesting large-scale wind
Article

A chemicals technology firm in Belgium recently launched its vision for using green ammonia for "energy harvesting." The Dualtower is a new kind of wind turbine, under development by Arranged BVBA, that will use wind power to produce and also store hydrogen and nitrogen. These gases are "harvested" as ammonia, which becomes the energy carrier that allows large-scale renewable energy to be transported economically from remote locations with excellent renewable resources to centers of power consumption. Arranged's Dualtower is ambitious and, perhaps, futuristic but it illustrates three powerful concepts. First, the vast untapped scalability of renewable power. Second, the benefits of using ammonia as an energy carrier, to improve the economics of large-scale, long-distance energy transportation relative to every other low-carbon technology. The third concept is simply that every idea has its time, and now may be the time for ammonia energy. What was once futuristic, now just makes sense.

Process Superstructures and the Production of Cost-Advantaged Ammonia
Article

At the 2017 NH3 Energy+ Conference, graduate student Doga Demirhan reported on an ongoing investigation at the Energy Institute at Texas A&M University. The work involved evaluation of options for an ammonia production system and concluded that biomass could be an economically viable feedstock under current, real-world conditions. This is a notable outcome. Just as notable is how it was reached.